Scattering and radiative properties of complex soot and soot-containing aggregate particles
نویسندگان
چکیده
We use the superposition T-matrix method to compute the scattering matrix elements and optical cross-sections for a variety of complex soot and soot-containing aggregate particles in random orientation at a visible wavelength 0.628 mm. It is shown that random variations in the geometrical configuration of monomers in a soot cluster for fixed fractal dimension and prefactor, monomer size, and number of monomers have a rather weak effect on scattering and absorption, at least in the visible part of the spectrum. Thus, the electromagnetic scattering and absorption characteristics of a single cluster realization are sufficient to represent the mean values obtained by averaging over many realizations of the ‘‘equivalent’’ clusters generated for the same fractal parameters. However, the results for the soot clusters differ fundamentally from those calculated for the volume-equivalent soot sphere and for the corresponding external mixture of soot monomers, assuming that there are no electromagnetic interactions between the monomers. We also compute and analyze the scattering and absorption properties of aerosols formed by semi-external aggregation of larger ammonium sulfate, silica, or dust particles with soot clusters as well as semi-external aggregates consisting of several components with different sizes and refractive indices. Depending on its chemical composition and size, the larger particle that is in touch with a soot cluster can strongly influence, or even dominate, the overall optical characteristics of the aggregate. Aggregation can result in stronger extinction, absorption, and scattering cross-sections relative to those computed for the corresponding external mixture. Possibly owing to mutual shadowing, the optical cross-sections of multi-component aggregates are smaller than those of their externally mixed counterparts, but by no more than 20%. Implications of our study for analyses of remote sensing observations and atmospheric radiation balance computations are discussed. Published by Elsevier Ltd.
منابع مشابه
Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
The structure of soot was investigated within the fuel-lean (overfire) region of overventilated buoyant turbulent diffusion flames burning in still air. The study was limited to the long residence time regime where characteristic flame residence times are roughly more than an order of magnitude longer than the laminar smoke point residence time and soot generation factors (the mass of soot emit...
متن کاملThe Ångström Exponent and Turbidity of Soot Component in the Radiative Forcing of Urban Aerosols
In this work, we extracted data from Optical Properties of Aerosols and Clouds (OPAC) using FORTRAN program to model the effect of soot on optical depth, scattering coefficient, absorption coefficient, single scattering albedo, extinction coefficient and asymmetry parameter at spectral range of 0.25 to 1.00 m for eight different relative humidities (RHs) (0, 50, 70, 80, 90, 95, 98 and 99%). Th...
متن کاملEnhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.
Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing ...
متن کاملVariability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.
The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably a...
متن کاملModeling of Radiative Heat Transfer in 2D Complex Heat Recuperator of Biomass Pyrolysis Furnace: A Study of Baffles Shadow and Soot Volume Fraction Effects
The radiative heat transfer problem is investigated numerically for 2D complex geometry biomass pyrolysis reactor composed of two pyrolysis chambers and a heat recuperator. The fumes are a mixture of carbon dioxide and water vapor charged with absorbing and scattering particles and soot. In order to increase gases residence time and heat transfer, the heat recuperator is provided with many incl...
متن کامل